Airport paving deicing and anti-icing have multiple competing objectives:
• Aircraft safety (and mobility)
• Environmental regulatory requirements
• Cost
• Materials compatibility
• Operational implementation viability

More than a decade of experience in the use of new PDP formulations suggested that they present new challenges:
• Traditionally, uric/glycol as the freezing point depressant
• Water quality concerns
• Alternatives: KAc, NaAc, NaFm, KFm

Corrosion impacts on aircraft components and C/C brakes
Damage to airfield pavements and other infrastructures

Potassium acetate and sand are most widely used for snow and ice control of airfield pavements in the U.S.

Catalytic oxidation of C/C composite brakes due to airfield PDPs has become a growing concern:
• More frequent pre-maintenance inspection activities ($$$)

More research is needed to better understand relations among brake design, AD treatment, and PDP contamination in catalytic oxidation of brake K and Na in modern PDPs contribute to the more rapid structural failures of C/C brakes observed in recent years.

Modern PDPs have been reported to affect aircraft components:
• Field reports increasingly suggest that the contact w/ modern PDPs promotes damage to C/C–plated components
• C: a near-ideal barrier/coating material
• Conductivity, low density, high acidity, solubility, galvanic compatibility w/ alloys, and non-volumetric expansion

Anecdotal evidence:
• There is a need to unravel the specific mechanisms by which alkali metal salts cause or promote ASR.

Modern PDPs have been reported to affect aircraft concrete pavement:
• More research is needed to better understand relations among aircraft component design, C/Cs used, and PDP contamination in metallic corrosion.

Modern PDPs could cause or accelerate ASR distress in PCC pavement:
• Lab studies suggested that modern PDPs could cause or accelerate ASR distress in PCC pavement
• Research sponsored by the IPRA implicates acetate/formate-based deicers in increased occurrence of ASR.

Standard test protocols were modified to evaluate the ASR susceptibility of PCC:
• ASTM standard test methods regarding ASR (C1260, C1293, C1587) were modified based on research by Clemson University.

Mitigation:
• Use stainless steel light fixtures
• Install new lighting cable and system and remold monitor them

There is still a need to establish a comprehen- sive PDP catalytic oxidation test protocol:
• Test protocol under development
• SAE G12 Deicing Committee Carbon Oxidation ASTM (G-12) was modified based on research by Clemson University.

There is still a need to establish a comprehen- sive metallic corrosion test protocol for PDPs:
• Test protocol under development
• Boeing initiated comprehensive testing (ASTM C1260, C1435 and C1436, C1567) were modified based on research by Clemson University.

Impact of Airport Pavement Deicing Products on Aircraft and Airfield Infrastructure

Authors: Xiaoming Shi, Alarmed Lunsford, Michael Akin, Joygan Fan, Steve Alber

Data from the 2006 EPA Questionnaire. 95 airports

Airfield PDPs have become a growing concern: More frequent pre-maintenance inspection activities ($$$)

More research is needed to better understand relations among brake design, AD treatment, and PDP contamination in catalytic oxidation of brake

Field reports increasingly suggest that the contact w/ modern PDPs promotes damage to C/C–plated components

C: a near-ideal barrier/coating material
• Conductivity, low density, high acidity, solubility, galvanic compatibility w/ alloys, and non-volumetric expansion

Anecdotal evidence:
• There is a need to unravel the specific mechanisms by which alkali metal salts cause or promote ASR.

Modern PDPs have been reported to affect aircraft concrete pavement:
• More research is needed to better understand relations among aircraft component design, C/Cs used, and PDP contamination in metallic corrosion.

Modern PDPs could cause or accelerate ASR distress in PCC pavement:
• Lab studies suggested that modern PDPs could cause or accelerate ASR distress in PCC pavement
• Research sponsored by the IPRA implicates acetate/formate-based deicers in increased occurrence of ASR.

Standard test protocols were modified to evaluate the ASR susceptibility of PCC:
• ASTM standard test methods regarding ASR (C1260, C1293, C1587) were modified based on research by Clemson University.

Mitigation:
• Use stainless steel light fixtures
• Install new lighting cable and system and remold monitor them

There is still a need to establish a comprehen- sive PDP catalytic oxidation test protocol:
• Test protocol under development
• SAE G12 Deicing Committee Carbon Oxidation ASTM (G-12) was modified based on research by Clemson University.

There is still a need to establish a comprehen- sive metallic corrosion test protocol for PDPs:
• Test protocol under development
• Boeing initiated comprehensive testing (ASTM C1260, C1435 and C1436, C1567) were modified based on research by Clemson University.

Data from the 2007 ACRP Survey

Effectiveness and environmental impacts are the two most important factors considered by airports for PDPs selection:

Modern PDPs have been reported to affect airfield asphalt pavement:
• Concerned to the use of acetate/formate-based deic- ers in the 1990s, asphalt pavement in Europe saw the increase in durability problems (asphalt emulsification, disintegration and shipping away in Nordic countries)
• No field evidence reported in North America (ACRP survey w/ limited responses)

There are no simple solutions to the competing, sometimes conflicting, objectives for PDPs selection

The ACRP survey provided a forum to describe knowledge about PDP use research in a multiple PDPs context. Two important themes were the challenge of needing environmentally benign deicers that are simultaneously safe for aircraft, pavements, and electrical systems.

This synthesis provided a holistic and objective perspective for the various stakeholder groups.

Contact:
Xiaoming Shi, PhD, PE
Director, Corrosion & Sustainable Infrastructure Laboratory Program Manager, Bridge Maintenance & Effects
Western Transportation Institute
PO Box 17450
Montana State University
Bozeman, MT 59717-1232
Email: Xiaoming_Shi@msu.montana.edu
Phone: 406-994-6498

Symposium Poster #96
SERDP-ESTCP’s Partners

© 2009 SERDP-ESTCP
All rights reserved.